Finite

U-46 Curriculum Scope and Sequence

Reporting Strand	Instructional Focus	Standards	Semester
	Represent linear equations in matrices.	A.REI.8, A.REI.9	
Matrices	Perform operations on matrices and use matrices in applications.	N.VM.6, N.VM.7,N.VM.8, N.VM.9, N.VM.10, N.VM.11, N.VM.12	1
Linear	Use geometric linear programing to solve problems.	A.REI.6, A.REI.12, A.CED.1, A.CED.3	1
Programing	Use algebraic linear programing to solve problems.	A.REI.8, A.REI.9	1
Applied Matrix	Evaluate and analyze Markov Chains	A.REI.8	1
Theory	Use Game Theory to solve problems.	S.MD.5, S.MD.6, S.MD.7	1
Financial Math	Analyze and apply different types of interest and rate	A.SSE.1, A.CED.2, A.CED.4, F.BF.5, F.LE.3, F.IF.6	2
Probability	Calculate expected values and use them to solve problems	S.MD.1, S.MD.2, S.MD.3, S.MD.4	2
Statistics	Analyze and use data to solve problems	AP Stats Prep	2

Matrices

Instructional Focus: Representing linear equations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Representing and finding inverses of matrices (A.REI.8, A.REI.9)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Proving	Represent a system of equations using matrices when variables are <u>on both</u> <u>sides of an equation, or</u> <u>have missing variables</u> . Find the inverse of a matrix and use it solve systems of linear equations with dimensions of • 2x2 <u>without</u> technology • 3x3 with technology	Represent a system of equations using matrices when all variables are <u>on one</u> <u>side of each equation</u> . Find the inverse of a matrix <u>and use it solve systems of</u> <u>linear equations with</u> <u>dimensions of</u> • 2x2 <u>with</u> technology • 3x3 with technology	Identify a system of equations in a matrix. Find the inverse of a matrix	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

A.REI.9 Find the inverse of a matrix if it exists and use it to solve systems of linear equations.

A.REI.8 Represent a system of linear equations as a single matrix equation in a vector variable.

Matrices

Instructional Focus: Perform operations on matrices and use matrices in applications.

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
CCSS Matrix operations and applications (N.VM.6, N.VM.7, N.VM.8, N.VM.11) Explaining properties of matrices (N.VM.9, N.VM.10)	 4 – Mastery Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Extract a matrix or matrices from a situation (i.e. word problem) <u>and</u> <u>use the matrix or matrices</u> <u>to solve problems.</u> Given matrices, do <u>all</u> of the following with and without solving technology: • Multiply by scalars • Add matrices • Subtract matrices • Multiply matrices • Multiply matrices • Multiply by a vector Can explain <u>all</u> of the following: • Lack of Commutative property of Matrix Multiplication • Associative property of Matrix Multiplication • Distributive property of Matrix	Extract a matrix or matrices from a situation (i.e. word problem) Given matrices, do <u>all</u> of the following with solving technology: • Multiply by scalars • Add matrices • Subtract matrices • Multiply matrices • Multiply by a vector Can explain <u>four</u> of the following: • Lack of Commutative property of Matrix Multiplication • Associative property of Matrix Multiplication • Distributive property of Matrix	Identify the corresponding matrix from a situation. Given matrices, do three of the following with solving technology : • Multiply by scalars • Multiply by scalars • Add matrices • Subtract matrices • Subtract matrices • Multiply matrices • Multiply by a vector Can explain three of the following: • Lack of Commutative property of Matrix Multiplication • Associative property of Matrix Multiplication • Distributive property of Matrix Multiplication	
		Multiplication Zero Matrix Identity Matrix 	MultiplicationZero MatrixIdentity Matrix	Multiplication Zero Matrix Identity Matrix 	
Finding and using determinants and absolute values (N.VM.12)		Find the area by using the determinant and absolute value of a 2 x 2 matrix as a transformation on the plane.	Find determinant and absolute value of a 2 x 2 matrix as a transformation on the plane.	Find determinant and absolute value of a 2 x 2 matrix	

N.VM.6 Use matrices to represent and manipulate data.

N.VM.7 Multiply matrices by scalars to produce new matrices.

N.VM.8 Add, subtract, and multiply matrices of appropriate dimensions.

N.VM.11 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.

N.VM.9 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.

N.VM.10 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers.

N.VM.12 Work with 2 × 2 matrices as a transformations of the plane, and interpret the absolute value of the determinant in terms of area.

Linear Programing Instructional Focus: Geometric Linear Programing

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solving systems of equations and inequalities (A.REI.6)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Graph the feasible region based on constraints Find each vertex of the feasible region by solving a system of equations	<u>Graph</u> the feasible region based on constraints. <u>Find</u> each vertex of the feasible region <u>by solving a</u> <u>system of equations</u>	<u>Identify</u> the feasible region given a graph <u>Identify</u> each vertex of the feasible region given a graph	Little evidence of reasoning or application to solve
Graphing systems of equations and inequalities (A.REI.6, A.REI.12) Creating equations (A.CED.1*) Representing constraints and interpreting solutions (A.CED.3*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	State the feasible region as being bounded or unbounded Represent constraints with equations, inequalities and in a system of equations and/or inequalities in contextual situations Create the objective function with two or more variables from context <u>and use it in a linear</u> <u>programming problem to find the optimal solution</u> Interpret test points <u>as</u> <u>viable or nonviable</u> in context of the situation	State the feasible region as being bounded or unbounded Represent constraints with equations, inequalities and in a system of equations and/or inequalities in contextual situations <u>Create</u> the objective function with two or more variables from context	State the feasible region as being bounded or unbounded <u>Identify</u> the objective function with two or more variables for a given context	the problem Does not meet the criteria in a level 1

- A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- A.CED.1* Create equations and inequalities in one variable and use them to solve problems
- A.CED.3* Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

Linear Programing

Instructional Focus: Algebraic Linear Programing

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solving linear programming problems using matrices (A.REI.8, A.REI.9)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Represent a system of given constraints using a matrix Identify an optimized problem Identify the pivot Find the solution (more than 1 pivot required) Interpret the tableau in context of the situation Create a system of optimized constraints from a context	Represent a system of given constraints using a <u>2x2 or 3x3</u> matrix Identify an optimized problem Identify the pivot Find the solution using the simplex method (1 pivot required) Interpret the tableau <u>in</u> <u>context</u> of the situation	Represent a system of given constraints using a <u>2x2</u> matrix • Identify an optimized problem • Identify the pivot • Find solution using the simplex method (1 pivot required) • Interpret <u>the</u> <u>parts</u> of the tableau	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

A.REI.8 Represent a system of linear equations as a single matrix equation in a vector variable

A.REI.9 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).

Applied Matrix Theory

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Creating and interpreting Markov	Can extend thinking beyond the standard, including tasks that may	Create a transition matrix and distribution vector <u>from context</u>	Create a transition matrix and distribution vector from context	Create a transition matrix from a diagram	Little evidence of reasoning
chains (A.REI.8)	 involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Find and <u>interpret</u> the steady state distribution, distribution after n transitions (regular or absorbing), <u>and</u> probability of being absorbed	Find the steady state distribution <u>or</u> the distribution after n transitions	Classify given matrices by type	or application to solve the problem Does not meet the criteria in a level 1

Instructional Focus: Markov Chains

A.REI.8 Represent a system of linear equations as a single matrix equation in a vector variable.

Applied Matrix Theory

Instructional Focus: Game Theory

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Creating and analyzing matrices in Game Theory (S.MD.5, S.MD.6, S.MD.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Proving	 For zero sum games including <u>at least two</u> options <u>without a saddle</u> <u>point</u> Create a payoff matrix Find the mixed strategy (probability distributions) for each player Find the expected value of the game 	 For zero sum games including two options with <u>more than one</u> saddle point Create a payoff matrix Find the <u>mixed</u> <u>strategy</u> (probability distributions) for each player Find the expected value of the game 	 For zero sum games including two options with <u>a</u> saddle point Create a payoff matrix Find the strategy (probability distributions) for each player Find the expected value of the game 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- S.MD.5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
- S.MD.6 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
- S.MD.7 Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Financial Math

Instructional Focus: Analyze and apply different types of interest and rate

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Interpret Expressions (A.SSE.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting	Interpret individual parts of expressions (such as variables, coefficients, factors, etc.) and explain their meaning in terms of the context in <u>all of the</u> <u>following:</u> • Simple Interest • Compound Interest • Annuities	Interpret individual parts of expressions (such as variables, coefficients, factors, etc.) <u>and explain</u> <u>their meaning in terms of</u> <u>the context in two of the</u> <u>following:</u> • Simple Interest • Compound Interest • Annuities	Interpret individual parts of expressions (such as variables, coefficients, factors, etc.) in all of the following: • Simple Interest • Compound Interest • Annuities	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
	 Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	 Group parts of an expression and interpret their meaning in terms of the context in <u>all</u> <u>of the following:</u> Simple Interest Compound Interest Annuities 	 Group parts of an expression and interpret their meaning in terms of the context in two of the following: Simple Interest Compound Interest Annuities 	 Group parts of an expression and interpret their meaning in all of the following: Simple Interest Compound Interest Annuities 	level 1
Create and solve equations (A.CED.2 A.CED.4)		Create and solve equations to represent relationships in contextual situations, including <u>all</u> the following situations: Simple Interest Compound Interest Annuities Amortization	Create and solve equationsto represent relationships incontextual situations,including twothe followingsituations:Simple InterestCompound InterestAnnuitiesAmortization	Create and solve equationsto represent relationships incontextual situations, in oneof the following situations:• Simple Interest• Compound Interest• Annuities• Amortization	
Exponential and Logarithmic inverses (F.BF.5)		Recognize that exponential and logarithmic functions are inverses of each other and use these functions to <u>solve</u> <u>real-world problems.</u>	Recognize that exponential and logarithmic functions are inverses of each other and use these functions to solve logarithmic and exponential equations.	Recognize that exponential and logarithmic functions are inverses of each other and <u>convert from one form into</u> <u>the other.</u>	
Compare Rate of Change (F.LE.3, F.IF.6)		Calculate and compare the rate of change and value of function presented in symbolic and table form in context of a situation <u>and use</u> <u>it to make a decision</u> • Stated rate • Effective rate	Calculate and compare the rate of change and value of function presented in symbolic <u>and</u> table form <u>in</u> <u>context of a situation</u> • Stated rate • Effective rate	Calculate the rate of change and value of a function presented in symbolic <u>or</u> table form • Stated rate • Effective rate	

A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

A.SSE.1 $\,$ Interpret expressions that represent a quantity in terms of its context. \star

a. Interpret parts of an expression, such as terms, factors, and coefficients.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.

F.BF5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *(Modeling Standard)

F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star

Probability

Instructional Focus: Calculate expected values and use them to solve problems

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Representing probability distributions (S.MD.1) Calculating and interpreting expected values	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying	Define a random variable for a quantity of interestAssign a numerical value to each event in a sample spaceGraph the corresponding probability distribution using the same graphical displays as for data distributions.Calculate and interpret information to make a decision	Assign a numerical value to each event in a sample space Graph the corresponding probability distribution using the same graphical displays as for data distributions. Calculate the expected value of a random variable and use the information to make a decision	Graph a given probability distribution Calculate the expected value of a random variable	Little evidence of reasoning or application to solve the problem
(S.MD.2) Developing probability distributions and finding expected values (S.MD.3, S.MD.4)	Justifying Critiquing Analyzing	Develop a probability distribution for a random variable for a sample space of • theoretical probabilities • experimental probabilities <u>and find the expected value</u>	Develop a probability distribution for a random variable for a sample space of • theoretical probabilities • experimental probabilities	Calculate probabilities for a sample space of	Does not meet the criteria in a level 1

S.MD.1 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.

- S.MD.2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
- S.MD.3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value
- S.MD.4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.

Statistics

Instructional Focus: Analyze and use data to solve problems

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Calculating and interpreting standard deviations	Can extend thinking beyond the standard, including tasks that may involve one of the following:	For random variables and binomial random variables, calculate <u>and interpret</u> the standard deviation Determine <u>binomial</u> <u>probability</u> by using normal	For random variables <u>and</u> binomial random variables, calculate the standard deviation Determine the <u>probability of</u> nonstandard normal	For random variables <u>or</u> binomial random variables, calculate the standard deviation Determine the <u>probability of</u> standard normal	Little evidence of reasoning or application to solve
Determining the probability of normal distributions	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	approximation	distributions by <u>calculating a</u> <u>z-score</u>	distributions, <u>given a z-score</u>	the problem Does not meet the criteria in a level 1